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Outline of talk

• Motivation and background to this work
• The average-atom model/equations
• The RPA equations
• Some preliminary results
• Conclusions



Motivation
• At low/intermediate densities it is possible to calculate,

at some level of detail, the radiative properties which are
needed to describe the atomic processes in a plasma
(e.g. current LANL ATOMIC code)

• At high densities more approximate methods must be
used. Plasma effects (e.g. pressure ionization) often
dominate and must be taken into account in a consistent
manner which must also treat the correlations between
the bound and free electrons [Blenski, ApJ 127, 239
(2000)]

• Recent and planned intense laser pulse experiments
expect to reach these very high (approaching solid)
densities

• Only viable way forward are average-atom type
approaches



Background: Average-Atom
approach

• The AA approximation is where the charge and
excited-state distributions inside a plasma are
replaced by a single fictitious ionic species
which has the average charge of the ions in the
plasma and the average population distribution
of the ions among the various excited states

• Fundamental assumption that the plasma can
be modeled by a finite temperature electron
system in a central potential

• This central potential has contributions from the
nucleus, the bound and free electrons, and from
the other ions and electrons within the plasma



Background
• The work of Csanak and Kilcrease [JQSRT 58,

537 (1997)] discussed the AA model and the
fact that the orbitals calculated by a standard
average atom (AA) approach cannot represent
the “excited orbitals” of an atom in a plasma
[this was also pointed out by F. Perrot]

• Basically because these “excited orbitals” are
calculated in the incorrect potential (VN, not the
correct VN-nj), due to the non-removal of the self
interaction term in the H-F equation for these
orbitals
– [For the ground state, the self interaction term is

removed, as pointed out by H. Kelly, but not for the
excited states]



Background
• This may not make a significant difference for

thermodynamic quantities (such as EOS properties), but
for spectral properties, such as photoabsorption, more
accurate schemes are necessary

• A promising approach to computing the correct AA
excited orbitals is the temperature-dependent Hartree-
Fock approximation, or Random Phase Approximation
(RPA)
– This introduces important channel-coupling between excited

states into the problem
– This also removes the self-interaction term from the excited

orbitals and so properly describes the “excited states” of an
average atom.

• This can be considered a solution to the Latter-tail
correction problem as discussed by, e.g. Salzmann et al
in their work on photoexcitation and photoionization of
hot dense Al plasmas

• In the T=0 limit this approach is identical to that
pioneered by Amusia for photoionization



Background
• Subsequently, Csanak and Meneses [JQSRT 71, 281

(2001)] developed these RPA equations and
constructed them in a coupled integro-differential form

• They then solved these in the single-channel
approximation.

• They used the AA orbitals and occupation numbers from
the INFERNO code to compute oscillator strengths for a
He plasma

• This includes the ion-ion correlations in a fairly crude
way, where the ion density is presumed to be zero
within the ion (AA) sphere, and constant outside it



Background
• Recently, Csanak and Daughton [JQSRT 83, 83

(2004)] solved the same single-channel RPA
equations for He and Li plasmas.

• In this case they used an AA model which
included ion correlation, in which the ion density
is computed from hypernetted chain (HNC)
theory

• They compared oscillator strengths and
transition energies with previous calculations of
Rozsnyai, where fairly good agreement was
found over a range of densities



Background
• In this work, we solve the RPA equations using

an improved AA model based on the APATHY
code of Bill Daughton. This incorporates a
pseudo-atom approach which allows a clear
definition of the internal energy of the system.

• We solve the RPA equations using a Linear
Algebra (LA) technique pioneered by Lee Collins

• This allows us to solve the coupled-channel
equations in a fairly straightforward manner

• Preliminary results are presented



Finite temperature RPA

• Will not derive the RPA equations here!
• Suffice to say for now that the derivation

is based on the work of Csanak and
Kilcrease using the AA orbitals.

• The RPA approach produces the
appropriate potential for the excited
electron of the “average-atom” and can
incorporate channel-coupling effects



Average-atom eigen-functions

• The AA orbitals [Pνl(r)] are eigenfunctions of the AA one-
electron problem written in the form

• where HAA is the AA radial Hamiltonian with:

– Z the nuclear charge
– VAA(r) includes the electrostatic plus local exchange potential of

the AA model. It is temperature and density dependent and
depends on the Fermi factor

• ενl is the eigen-energy  of the AA orbital Pνl(r)
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• In differential form the coupled-channel RPA
equations look like:
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α and β are
angular factors



Finite temperature RPA
• These RPA equations are the proper one-electron

equations for the orbitals of an “excited electron” in the
plasma

• ωn is the transition energy of interest
• The 1st and 2nd terms on the RHS remove exactly the

electrostatic and exchange pieces of the potential
necessary to remove the self-interaction.

• The amount of charge removed is controlled by nj; the
fractional occupation number of the AA orbital.

• The final orthogonality term controls the overlap
between the true excited-states and the AA “excited
states”. Again, its importance depends on the
occupation number of these AA “excited-states”.

• Finally, VL(r1,r2) is the multipole component in the
expansion of the Coulomb potential



Average-Atom approach: APATHY
• To solve the AA equations and to generate a self-

consistent set of AA orbitals and potentials we use the
APATHY code

• Developed by Bill Daughton and collaborators at LANL
• Solves non-relativistic Schrödinger equation for

bound/continuum wavefunctions for electron density
• Sophisticated treatment of the ion-ion correlations using

a “pseudo-atom” approach along with hypernetted-chain
theory

• Has been compared in detail with SESAME database
for Al and Si for a range of EOS quantities



Solution of the RPA equations
• Use the Linear Algebra (LA) method [eg: Collins

& Schneider, PRA 24, 2387 (1981)] to solve the
RPA equations

• This has previously been used in many other
scattering problems and has found to be a
robust, reliable method

• Extension of the LA method to treat bound-state
problems also made by Lee Collins

• Problem is recast into an integral equation and
solved using numerical quadrature

• Equation is converted into integral form by using
Green’s functions

• Extension to a coupled-channel problem has
been made and is currently being tested



Results

• Preliminary calculations so far
• Compare a He plasma at 10 eV at various

densities with previous work of Csanak and
Daughton, as well as older AA results of
Rozsnyai

• Good agreement is found for the single-channel
case using the LA method

• Found that inclusion of the orthogonality term
makes little difference for these conditions



He plasma oscillator strengths –
SCRPA calculations

9.01e-4

9.00e-4

OS

1.981.93e-31.945.33e-31.852.70e-21.58LA code

1.981.93e-31.945.30e-31.842.70e-21.58C & D

w5pOSw4pOSw3pOSw2p

T=10 eV, ρ=1.5 X 1019/cm3

All quantities in atomic units

T=10 eV, ρ=1.5 X
1020/cm3

2.64e-3

2.57e-3

OS

1.857.08e-31.822.15e-21.750.1091.51LA code

1.857.01e-31.822.13e-21.750.1091.51C & D

w5pOSw4pOSw3pOSw2p

We compare with the previous
calculations of Csanak & Daughton



He plasma oscillator strengths –
SCRPA calculations

2.64e-31.857.08e-31.822.15e-21.750.1091.51LA code
(80)

2.64e-3

2.64e-3

OS

1.857.08e-31.822.15e-21.750.1091.51LA code
(90)

1.857.08e-31.822.15e-21.750.1091.51LA code
(60)

w5pOSw4pOSw3pOSw2p

T=10 eV, ρ=1.5 X 1020/cm3

All quantities in atomic units
Convergence of calculations with respect 
to the number of points in the LA calculation



He plasma oscillator strengths –
SCRPA calculations

1.28e-2

1.20e-2

OS

1.982.74e-21.947.54e-21.853.82e-11.58LA code

1.972.72e-21.937.49e-21.833.50e-11.56Rozsnyai

w5pOSw4pOSw3pOSw2p

T=10 eV, ρ=1.5 X 1019/cm3

Comparing OS divided by
initial occupation number

T=10 eV, ρ=1.5 X
1020/cm3

8.12e-3

-

OS

1.852.18e-21.826.64e-21.750.3371.51LA code

 -2.14e-21.996.00e-21.930.2881.73Rozsnyai

w5pOSw4pOSw3pOSw2p

We compare our calculations with
previous AA calculations of Rozsnyai



He plasma oscillator strengths –
SCRPA calculations

2.65e-31.857.12e-31.822.16e-21.750.1091.51LA code
(orthogonality
to 3 orbitals)

2.64e-3

OS

1.857.08e-31.822.15e-21.750.1091.51LA code (no
orthogonality)

w5pOSw4pOSw3pOSw2p

T=10 eV, ρ=1.5 X 1020/cm3

All quantities in atomic units
Effect of including orthogonality term in RPA
equations

Orthogonality term has a small effect for this system



Conclusions & future directions

• Formulated an RPA approach to properly
describe spectral properties of atoms in dense
plasmas

• Used the APATHY code to solve the AA
equations

• Used the Linear Algebra code to solve the RPA
equations

• We are now in a position to solve the coupled-
channel RPA equations and apply them to
systems of interest



• In differential form the single-channel RPA
equations look like:
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APATHY: outline
• The AA approximation is where the charge and excited-

state distributions inside a plasma are replaced by a
single fictitious ionic species which has the average
charge of the ions in the plasma and the average
population distribution of the ions among the various
excited states

• Fundamental assumption that the plasma can be
modeled by a finite temperature electron system in a
central potential

• This central potential has contributions from the
nucleus, the bound and free electrons, and from the
other ions and electrons within the plasma

• A local exchange potential is used which is a function of
the electron density [we use a finite-temperature
exchange-correlation potential of Perrot and Dharma-
wardana]



• Several different AA approaches have been used

• Standard approach is “ion cell” model:
– Confine each ion to a cell
– Each cell contains Z electrons and is neutral
– One solves for a self-consistent potential (for the electrons):

• More recent approach is ion correlation model
• Statistical distributions of both ions and electrons are

computed around the test ion

• Properly adding up the various energy terms is still
ambiguous
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APATHY: AA model
• Decompose plasma into N identical charge clouds
• One has a central “pseudo-atom” with a statistical

distribution of other pseudo-atoms
• Energy of a single pseudo-atom is clearly defined, as is

the interaction energy between the pseudo-atom and
the rest of the plasma

• Allows the total internal energy of the system to be
easily written

• Results in a self-consistent potential for system of the
form

)(')'()'()()( rVdrrrVrgnrVrV excatomiatom +!+= "



APATHY: AA model
• In this equation Vatom is defined as

• Where the bound and free electron densities are given as

• Where f is the usual Fermi factor and u(r) are the radial atomic
wavefunctions for a given state

• A local exchange potential is used which is a function of the
electron density [we use a finite-temperature exchange-
correlation potential of Perrot and Dharma-wardana]
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APATHY: Ion-ion correlation
• Hypernetted Chain Theory (HNC) to compute ion density
• Non-perturbative method, well suited to modeling the long-range

interactions
• Uses the Ornstein-Zernike relation to compute the pair

correlation function h(r):

• The radial distribution function g(r) is then simply given from the
closure relation:

• The ion density is then given as ni(r)=niog(r) with nio the
macroscopic ion density for a given canonical ensemble.
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